nedelja, 24. maj 2015

RC airplane controls

RC airplane controls



http://rc-avti.si/sl/http://rc-avti.si/sl/

Getting a firm understanding of rc airplane controls.


The number of controls necessary or required differs between planes;
the simplest rc airplanes will have just one single control while the
more complex planes may have five, six or more. Your 'average' rc plane
will have three or four controls, this is by far the most common number.


Incidentally, if you're completely new to the radio control flying
hobby, a controllable function of any rc model is referred to as a channel so an rc airplane with control to, say, four functions will be called a 4 channel plane, sometimes abbreviated to just 4 ch.


RC airplane controls are, of course, the same as those
found on real airplanes and they control the model in exactly the same
way.
The four primary controls of an rc airplane are throttle, elevator, ailerons and rudder. The elevator, ailerons and rudder are known as control surfaces and the picture below shows where these main controls are located on a fairly typical 4 channel rc 'sport' airplane....


The primary rc airplane controls


Above: location of ailerons, elevators and rudder on an rc airplane.

Which controls do what?

Now you know where the primary rc plane controls are located, let's take a look at each one...


Throttle

Throttle assembly of a glow plug engineThrottle controls the speed of the engine and hence how fast or slow the propeller turns.

On a glow plug (or petrol) rc airplane engine the throttle works the
same as any internal combustion engine throttle, by changing the amount
of fuel and air that enters the combustion chamber of the engine. The
carburettor is operated by a single servo connected to the venturi of
the carb, which opens and closes (thus changing the fuel/air mixture) in
response to your throttle stick movements on the transmitter.


On an electric rc airplane the throttle is usually referred to as motor power rather than throttle. Very basic electric rc planes (i.e. toy ones) might not have proportional control to motor power but just a simple on/off switch instead.
Electric airplanes that do have control to motor power have an electronic speed control, or ESC, that controls power to the motor in direct response to your Tx stick movements.


In the air throttle/motor power not only controls the forward speed
of the airplane but also, more importantly, the rate of climb and
descent, because different amounts of lift are
generated at different airspeeds. For example, if your landing approach
path is too low you can make the airplane rise slightly without changing
speed much, simply by opening the throttle instead of using up
elevator. Conversely, closing the throttle will cause the airplane to
sink before the speed reduces.


Using throttle/motor power in this way is the correct way to fly your rc airplane, but many pilots use the elevator to control altitude and rates of climb and descent.


Elevators

The elevators are the hinged section of the tailplane, or horizontal
stabiliser, at the very rear of the airplane and are the single most
important control surface.
Elevators control the horizontal pitch attitude of the airplane, in other words whether the nose of the plane points upwards or downwards.


When elevators are in the up position (upward deflection) the nose of
the airplane is forced to point upwards, and with the elevators
deflected downwards then the nose is forced downwards. This resulting
nose up/nose down pitch attitude comes about as the upward/downward
deflection of the elevators changes the amount of down force being
generated by the tailplane.
It's worth noting that a plane can
still fly level, or even be descending, with a very nose-up attitude but
a nose-down pitch attitude will almost always result in the plane
entering a dive, thanks to our friend gravity!
Elevators directly effect the plane's airspeed more than the need to climb or dive.


Using elevators changes the airplanes pitch attitude


Elevators should be used in conjunction with rudder and/or ailerons when making a turn.


Ailerons

Not all rc airplane controls include ailerons, in fact the majority
of 3 channel radio control airplanes use rudder instead. But where
fitted, ailerons control the roll of the airplane about its longitudinal axis (imagine a straight line running through the centre of the fuselage, from nose to tail).


Ailerons work in pairs and are found on the trailing (rear) edge of the wing, and they work opposite to each other i.e. when one aileron moves up, the other one moves down and vice versa.


Using ailerons changes the airplanes roll


Ailerons work by changing the amount of lift generation
over the wing. As an aileron moves upwards so it disrupts the smooth
airflow over the wing surface and so lift is reduced slightly on that
wing. Over on the other wing the aileron moves downwards and increases
lift slightly. As a result, the airplane tilts and hence rolls towards
the side that's experiencing less lift.


When up elevator is applied at the same time as ailerons, the
airplane is pulled round in to a banked turn; the ailerons cause the
plane to roll and the up elevator causes the nose to pitch round in that
direction.
Ailerons are used in all aerobatic maneuvers that involve a rolling motion.


Rudder

The rudder is the hinged section of the fin, or vertical stabiliser, at the rear of the airplane.
It's used for directional control by changing the yaw of the airplane and works in the correct sense i.e. moving the rudder to the left causes the airplane to turn left and vice versa.


Using rudder causes the airplane to yaw


Applying rudder makes the nose of the airplane point to the left or
right, but rudder alone does not make the airplane roll like ailerons
do. It's actually the dihedral, or the upward 'V' angle
of the wing when viewed from the front, that makes the plane roll when
rudder is applied; a plane with very little or no dihedral will have a
much flatter turn when rudder is applied.


Rudder is also very important on the ground, it's the one control
that will keep your rc airplane tracking straight during a take off run
or landing roll if your plane isn't fitted with a steerable nose or tail
wheel.


Other RC airplane controls

Other important controls found on more complex rc airplanes include flaps and retractable landing gear, or 'retracts'.


Flaps are located on the trailing edge of each wing,
between the aileron and fuselage. They're used to generate more lift at
slower flying speeds and, at greater deflection, to slow the airplane
down close to landing by causing excessive drag.
Unlike ailerons,
flaps are connected in such a way that they both drop exactly the same
amount together so as not to upset the roll attitude of the plane when
they are deployed.


Flaps are operated with a toggle switch or rotating dial on the
transmitter. A dial is the better option because this allows the pilot
to use as little or as much flap as he wants, according to the
situation. Flaps operated by a single position (on/off) toggle switch
will be all or nothing.


When a lesser amount of flap is used it's quite common for the
airplane to pitch upwards as soon as the flaps are lowered, this is a
result of the extra lift being generated and the pilot needs to be aware
of this happening before he activates the flaps.


Flaps lowered for landing


Retractable landing gear (undercarriage) is landing gear that folds away into the airplane's wings or fuselage once the plane has taken off.
Retracts are often used on larger rc airplanes, particularly scale
models where the real airplane has retractable undercarriage. Larger
non-scale airplanes can also have retracts, particularly competition rc
airplanes where it's necessary to reduce the amount of drag on the plane
in the air. Obviously an airplane with no landing gear hanging below it
experiences a lot less drag than one with.


Retractable landing gear, or retracts


Retracts can be operated mechanically by a servo, driven by
compressed air or more recently electric worm-drive. The retraction of
the landing gear is operated by the flicking of a single switch on the
transmitter, typically either on the 5th or 6th channel.


Control surface mixing

Some rc airplanes are designed in such a way that they cannot have
separate ailerons and elevators - delta-wing planes, for example. When
this is the case control surface 'mixing' is necessary and this is only
possible on computerised rc radios that offer a mixing capability.


When elevators and ailerons are combined together, or mixed, they become elevons. They look just like elevators but move together, as elevators do, and individually, as ailerons do. In short, one pair of elevons does the job of elevators and ailerons.
Flaperons
are control surfaces that mix the actions of ailerons with flaps. In
other words, one pair of control surfaces along the trailing edge of the
wing take on the job of aileron control and flap control, when needed.
Spoilerons
are, in effect, the inverted version of flaperons. Spoilers are often
found on large rc gliders and operate by the control surfaces moving upwards
as opposed to flaps that drop down. When spoilerons are deflected, the
amount of lift is drastically reduced and so the glider's rate of
descent quickly increases, enabling the pilot to land it in a smaller
space.


There are other types of rc airplane control mixing too, but those
listed above are by far the most common that you'll encounter.


Channel mixing is another type of mixing supported
by most modern computer radios. I this case two separate channels can be
mixed to operate together.
A common example of channel mixing is
an aileron and rudder mix; a small amount of rudder is automatically
applied when you operate the ailerons. The purpose of this is to produce
a cleaner turn and can prevent the effects of adverse yaw, a common situation whereby the tail drops during a turn due to increased drag over the higher wing.



Ni komentarjev:

Objavite komentar